Close Close

Portfolio > Portfolio Construction > Investment Strategies

Quantitative Investment Strategies

Your article was successfully shared with the contacts you provided.

The primary theory espoused by many of these “technicians” is that the removal of all emotion from the trading process will undoubtedly improve returns. To some degree this is a valid hypothesis. A number of studies have shown that the average investor’s returns are stunted by emotional factors such as fear, greed, poor market timing, or by holding on to shares far too long in an attempt to recover losses or “get even.” Another touted advantage of quantitative strategies is that they remove the “story,” or qualitative bias, from investments.

Quantitative investment strategies should not be confused with high-frequency algorithm based trading where firms use supercomputers to trade large blocks of securities in a matter of microseconds to capture fleeting moves in everything from stocks, to currencies, to commodities.

Quantitative investment strategies come in many forms, from the mundane and simple to the incredibly complex. They can be as simple as buying the 10 highest yielding stocks in the Dow Jones Industrial Average, the so-called “Dogs of the Dow.” These simple models frequently have very mixed track records. Some of the more complex strategies rank and sort the investable universe by four to six key ratios or algorithms. With the wide array of information available today, the most complex strategies include dozens of variables over varying periods of time. These complex models often include a final optimization that dictates the construction of the investment portfolio. These optimization programs usually limit certain risks, as defined by the portfolio manager, such as position size or sector exposure relative to the underlying benchmark. The creators and users of these increasingly complex models spend a great deal of time, effort and resources endlessly refining both the inputs and output. See Risk/Return chart, here.

The effectiveness of quantitative methodologies is primarily dependent on two components: the accuracy of the data going into the model and the theoretical foundation of the model itself. The most effective managers not only scrub the data that goes into the model, but also regularly review the generated results. That is, once the portfolio has been assembled, each of the companies in the portfolio is reviewed to make sure that non-quantifiable factors such as lawsuits, management changes, industry competition or regulatory issues are unlikely to substantially change the potential for each company.

Earnest Partners, based in Atlanta, Georgia, is a separate account manager that relies predominantly on a quantitative process for its investment strategies. However, Earnest Partners relaxes the rigidity of the typical quantitative investment process by allowing the portfolio manager to emphasize individual industries and sectors within the portfolio, while budgeting or controlling overall risk. This overlay process allows the portfolio to demonstrate a very high correlation to its benchmark in terms of returns as well as volatility, while at the same time allowing the portfolio manager to add a measure of additional return for investors. Earnest Partners supplements their quantitative process with fundamental analysis to finalize the selection of the 50 or so securities in the portfolio.

More often than not, quantitative strategies of this type can be applied to any equity asset class and result in a style-consistent portfolio. See Style Conventration chart, here. However, before wealth managers can be comfortable using such portfolios as a client’s sole exposure for a particular asset class, it is prudent practice to study performance behavior through style analytics. Returns and holdings based style analysis can help confirm the output of an investment process and set proper client expectations going forward. For instance, models with economic and econometric underpinnings are likely to produce different results than popular momentum or “what’s working on Wall Street today” models. Ongoing monitoring helps wealth managers continually gauge the appropriateness of quantitative strategies as they adjust to dynamic financial markets and to properly position the strategy within the client’s diversified portfolio.

J. Gibson Watson III is president and CEO of Denver-based Prima Capital (, which conducts objective research and due diligence on SMAs, mutual funds, ETFs and alternatives.


© 2024 ALM Global, LLC, All Rights Reserved. Request academic re-use from All other uses, submit a request to [email protected]. For more information visit Asset & Logo Licensing.